回到古代当皇子:男朋友出轨之后的成长与反转

李修然回到皇宫的第一件事,就是处理婚约。他颤抖着手打开那张写满名字的帖子,嘴角不自觉地抽搐了一下。

“太子薨了,由太子爷接替。”

手指无意识地摩挲着衣角,他的瞳孔微微收缩——帖上那个人的名字赫然在列。

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

他的手指顿了顿,指尖有些发凉。

“多谢太子爷体谅。”

他强忍着内心的挣扎,将婚约贴撕下扔进了火盆。

第二天,他便找到了真相。

那日早朝上,由太子爷主持, everyone was looking at him expectantly.

李修然是唯一一个没有说话的人。

当他开口时,声音低沉而沙哑:

“父皇,此子与某 Lady 有不正当关系。”

会议室里一片死寂。

seconds later, theroom burst into chaos as noisy voices filled the air.

“The Prince’s father is dead! The Prince has been engaged to……”

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)

top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)

” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)

data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)

similarity_scores = []

for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)

ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True

Related Posts