李修然回到皇宫的第一件事,就是处理婚约。他颤抖着手打开那张写满名字的帖子,嘴角不自觉地抽搐了一下。
“太子薨了,由太子爷接替。”
手指无意识地摩挲着衣角,他的瞳孔微微收缩——帖上那个人的名字赫然在列。
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
他的手指顿了顿,指尖有些发凉。
“多谢太子爷体谅。”
他强忍着内心的挣扎,将婚约贴撕下扔进了火盆。
第二天,他便找到了真相。
那日早朝上,由太子爷主持, everyone was looking at him expectantly.
李修然是唯一一个没有说话的人。
当他开口时,声音低沉而沙哑:
“父皇,此子与某 Lady 有不正当关系。”
会议室里一片死寂。
seconds later, theroom burst into chaos as noisy voices filled the air.
“The Prince’s father is dead! The Prince has been engaged to……”
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True)
top3_data = [item[1] for item in ranked_data[:3]]
print(top3_data)
” datasets = data.split(‘\n’)
similarities = []
for doc in documents:
similarities.append(cosine_similarity(doc, dataset))
result = similar(similarities)
data = ‘回到古代当皇子\n男朋友出轨之后\n宫斗\n成长\n反转’
split_data = data.split(‘\n’)
similarity_scores = []
for split in split_data:
similarity = cosine_similarity(split, ‘回到古代当皇子’)
similarity_scores.append(similarity)
ranked_data = sorted(zip(similarity_scores, split_data), key=lambda x: x[0], reverse=True